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We studied the dynamical properties of Au using our previously developed tight-binding method.
Phonon-dispersion and density-of-states curves at T=0 K were determined by computing the
dynamical-matrix using a supercell approach. In addition, we performed molecular-dynamics simu-
lations at various temperatures to obtain the temperature dependence of the lattice constant and of
the atomic mean-square-displacement, as well as the phonon density-of-states and phonon-dispersion
curves at finite temperature. We further tested the transferability of the model to different atomic
environments by simulating liquid gold. Whenever possible we compared these results to experi-
mental values.

I. INTRODUCTION

Over the last two decades atomistic simulations have
become an increasingly important tool for modeling in
many areas of condensed-matter physics and material sci-
ence. The most challenging problem in computer-based
nano-scale simulations of real materials is to find an accu-
rate and transferable model for the atomic interactions
that reproduces the energetic and electronic properties
of the material. A whole hierarchy of models for atom-
ic interactions have been developed, ranging from simple
empirical potentials to sophisticated first-principles cal-
culations based on density-functional-theory (DFT). Al-
though DFT methods are very accurate and have been
successfully applied to the study of a broad range of ma-
terials and systems, they are computationally very de-
manding. Even with today’s state-of-the-art computers,
DFT simulations with more than 100 atoms are chal-
lenging. Empirical potentials, on the other hand, are
less demanding and have been used to simulate systems
with millions of atoms. This advantage is however to be
weighed against a loss in accuracy and transferability.

Several empirical potential methods have been used in
the past to simulate metallic systems: the embedded-
atom method, the effective-medium theory, Finnis-
Sinclair potentials and the second-moment approxima-
tion to the tight-binding model.1 The decade has seen the
emergence of a method that lies between first-principles
and empirical potentials: the so-called tight-binding (T-
B) molecular-dynamics method. It is more accurate than
the empirical potential methods because it explicitly de-
scribes the electronic-structure of the system. TB is
roughly three orders of magnitude faster than DFT based
methods due to the much smaller size of the secular e-
quation, which makes the N3 issue more tolerable. The
TB method has been used to study a broad range of
materials.2

Recently the NRL group proposed an alternative for-
mulation of the TB method, which was shown to work
well for transition metals,3 simple metals,4 and semi-

conductors.5 This approach has been successful in de-
termining static properties such as structural energy d-
ifferences, elastic constants, vacancy formation energies
and surface energies.

Although static calculations are very useful for deter-
mining many fundamental properties of materials, such
calculations are limited to properties at T=0 K. Most
problems in real materials involve processes that occur
at finite temperature. The purpose of the present work
is to demonstrate that our TB model can successfully be
applied to the study of the dynamical and finite temper-
ature properties of a representative material, gold. Our
previous TB parametrization of gold3 was highly success-
ful in predicting structural properties. We have improved
upon this parametrization in this paper. This provides
us with an ideal test case for demonstrating the power of
the method.

We tested our TB parameters by calculating the elas-
tic properties and comparing to first-principles calcula-
tions and experiment. We also found the the phonon-
dispersion curves and density-of-states (DOS) at T=0 K
by calculating the dynamical-matrix using a supercell
method.6 In addition, we performed molecular-dynamics
(MD) simulations at various temperatures to obtain the
temperature dependence of the lattice constant and of
the atomic mean-square-displacement, as well as the
electronic and phonon DOS and the phonon-dispersion
curves at finite temperatures and a simulation of the liq-
uid phase. Whenever possible we compare these results
to experimental data.

II. TECHNICAL DETAILS

Fitting procedure for Au

Details about our TB model can be found in Ref. 3.
In this paper we used a new TB parametrization for
Au,7 which works well even at very small interatomic
distances. The parameters of the model are fitted to re-
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produce data from DFT calculations: band structures
and total energy as a function of volume for fcc, bcc
and simple cubic (sc) structures. In the present case
the database included ten (10) fcc structures, six (6) bcc
structures, and five (5) sc structures. The calculation-
s were performed using the general potential Linearized
Augmented Plane Wave (LAPW) method,8, 9 using the
Perdew-Wang10 parametrization of the Local Density
Approximation.11 In addition care was taken to include
energies at very small volumes (down to 60% of the equi-
librium volume) in the fitting database. This turned out
to be very important in order to have parameters that
could be used in the wide range of interatomic distances
that occur during MD simulations. Finally it should be
stressed that no experimental data is used to determine
the parameters of the model.

DoD-TBMD code

Except as noted, the results presented in this pa-
per were obtained using the DoD-Parallel Tight-Binding
Molecular-Dynamics (TBMD) code developed as part of
the Computational Chemistry and Materials Science (C-
CM) contribution to the Common HPC Software Sup-
port Initiative (CHSSI). This program was written with
the goal of performing molecular-dynamics simulation-
s of metallic systems. Although initially written to run
with our TB Hamiltonian,3 this code is in fact model
independent.12 The electronic structure is calculated us-
ing either a O(N3) method such as diagonalization, or
by using an O(N2) method called the Kernel Polynomi-
al Method (KPM).13, 14 The code has been written for
both scalar and parallel computers. The parallel parts
of the code have been written using a message-passing
programming model relying on the MPI library to deal
with communications.15

Simulation details

To compute the dynamical-matrix we used an fcc su-
percell of 1331 atoms, obtained by replicating a primitive
fcc cell 11 times along the three primitive lattice vec-
tors. Periodic boundary conditions are applied through-
out this work. In the MD simulations the system consists
of an fcc supercell of 343 atoms, obtained by replicat-
ing a primitive fcc cell 7 times along the three primitive
lattice vectors. The Brillouin-zone (BZ) is sampled us-
ing the Γ-point. We checked that this is a reasonable
approximation even for a metal: the lattice constant,
bulk modulus and elastic constants obtained from the
343 atom supercell and Γ-point sampling are within 10%
of the values obtained using a primitive cell and a well
converged k-point set. The MD simulations were started
with atoms arranged on an fcc lattice and random ve-
locities drawn from a Boltzmann distribution for a tem-
perature 2T . The MD simulation was performed in the
micro-canonical ensemble, so at equilibrium the temper-
ature of the lattice averaged to T , and the “potential en-
ergy” of the system was raised by an amount 3/2 NkBT ,

where N is the number of atoms and kB is Boltzmann’s
constant. The equations of motion were integrated us-
ing the Verlet algorithm and a time step of ∆t = 2 fs,
giving a total-energy conservation within ∆E/E = 10−5.
The system was equilibrated at the desired temperature
for 1500 time steps (3 ps). Typically another 1500 addi-
tional steps were performed to calculate time averages.
The finite size of the simulation cell and the finite num-
ber of time steps in the simulation implies that the in-
stantaneous temperature of the cell, computed from the
kinetic energy, fluctuated around some average tempera-
ture, which was not necessarily the target temperature.
For the simulations conducted at a target temperature
of 300K we found that the average temperature after the
system reached equilibrium was 301K, with a standard
deviation of 8K. At 600K, we found the average temper-
ature to be 604K with standard deviation 20K, and at
1200K we found 1212K and 113K, respectively.

For the computation of the temperature dependence of
the lattice constant we used a 64 atom fcc supercell and
sampled the BZ with four k-points. For each volume and
temperature we ran a Langevin dynamics simulation16
for 2.5 ps, using a time step of 5 fs and a friction param-
eter γ=0.05 fs−1.

III. RESULTS AND DISCUSSION

Equation of State

In Fig 1 we present the energy versus volume curves
for a selection of crystal structures, calculated using the
static TB code.17 The LAPW total energies for the fc-
c, bcc, and sc structures, which were used in the fit, are
also plotted on the graphs. We find that the TB Hamil-
tonian predicts that the equilibrium fcc structure has a
lower energy than any other structure yet tested, con-
sistent with experiment and first-principles calculations,
and confirming the robustness of the Hamiltonian.

Elastic properties

The elastic properties of bulk fcc Au were calculated
using our TB parameters by means of the standard finite
strain method18, 19 and the static code. The results
are shown in Table I, along with comparisons to exper-
imental data20 and the results of first-principles LAPW
calculations. The latter calculations were also performed
using the Perdew-Wang LDA parametrization.10 The T-
B calculations reproduce the LAPW results very well and
are in good agreement with the experimental data.

Phonons at T=0 K

We determined the phonon dispersion curves and
density-of-states (DOS) of fcc Au by computing the dy-
namical matrix. This was achieved by using a large su-
percell, in our case containing 1331 atoms, and calculat-
ing the forces on all atoms in response to the displacemen-
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FIG. 1. Equation of State for selected crystal structures
of gold using the tight-binding parameters discussed in the
text. All coordinates are relaxed at each volume. The points
are the first-principles LAPW energies used in the fit. From
bottom to top, the ordering of the structures is fcc (LAPW
symbol +), hcp, bcc (LAPW symbol ×), hexagonal ω, A15,
and simple cubic (sc, LAPW symbol +×).

TABLE I. Bulk modulus and elastic constants (in GPa) for
Au computed using our TB model compared to the results of
LAPW calculations and experimental data. All calculations
are performed at the experimental room-temperature volume,
the measured elastic constants are taken from the compilation
of Simmons and Wang.20

B C11-C12 C11 C12 C44

TB 181 21 195 174 40
LAPW 182 27 200 173 33
Exp. 169 30 189 159 42

t of the atom at the origin. Provided this displacement
is small enough it is possible to construct the real-space
dynamical-matrix using finite differences and compute
the dynamical-matrix by a Fourier series.6

The high-symmetry direction phonon dispersion curves
for Au at T=0 K are shown in Fig. 2(a) together with
experimental data.21 The overall structure of the disper-
sion curves is well reproduced. The low frequency trans-
verse modes are in excellent agreement with experiment.
The longitudinal higher-frequency modes, however, are
systematically too high close to the BZ edge.

The phonon DOS is presented in Fig. 2(b) together
with experimental results. The DOS has two main peak-
s. From 0 to 3.5 THz the theoretical DOS reproduces
the experimental data very well. In contrast in the re-
gion 4-5 THz the position of the high frequency peak in
the theoretical curve is overestimated by about 0.5 THz
compared to experiment, consistent with the discrepan-
cy in the frequency of the high-frequency longitudinal
modes noted above.

We checked that the observed discrepancies are not
an artifact of the supercell method used to calculate
the dynamical-matrix. In particular we made sure that
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FIG. 2. (a) Phonon-dispersion curves for Au at T=0 K,
plotted along high-symmetry directions in the BZ. Lines are
spline fits to the theoretical TB data, open squares are exper-
imental data points.21 (b) Phonon density-of-states (DOS)
for Au at T=0 K. The full line is the theory result using our
TB model, while the dotted line is a fit to the experimen-
tal values.21 The dispersion curves and DOS were calculated
from the dynamical-matrix computed using an fcc supercell
containing 1331 atoms.

TABLE II. Selected phonon frequencies (in THz) at high
symmetry points in the Brillouin-zone. The calculated TB
and LAPW frequencies were obtained with the frozen phonon
method in cells with 2 or 4 atoms.

X(L) X(T) L(L) L(T) W(L) W(T)

TB 5.29 2.87 5.35 1.91 2.66 4.01
LAPW 4.43 4.53
Exp.21 4.60 2.72 4.69 1.85 2.63 3.62

an 11×11×11 supercell is large enough to converge the
dynamical-matrix. A first check is given by the slopes of
the dispersion curves as k→0, which are related to the
elastic constants. We found that the slopes were consis-
tent with our computed elastic constants (see Table I).
Another check is to compute the frequency of BZ-edge
phonons using the frozen-phonon method22 for a 2 or 4
atom unit cell, using the static code to calculate the
total energies. The computed BZ-edge phonon frequen-
cies are shown in Table II. They are in perfect agree-
ment with the frequencies derived from the dispersion
curves obtained using the dynamical-matrix method (see
Fig. 2), hence confirming the accuracy of the latter ap-
proach. Finally using the first-principles LAPW method
we calculated the phonon frequencies at X and L and
found very good agreement with experiment as shown in
Table II. We therefore conclude that the overestimate of
our calculated longitudinal phonon frequencies near the
BZ-edge is a shortcoming of our TB parameters. An ob-
vious approach to overcome this problem and improve
the agreement with experiment would be to include the
LAPW frequencies atX and L in our fitting database. N-
evertheless we note that our TB results for the dispersion
curves present a substantial improvement over results ob-
tained using the second-moment approximation to TB.1

Electronic Density of States at finite temperature
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FIG. 3. Temperature dependence of the electronic density
of states of gold, calculated using the eigenvalues generated
by the TBMD code, and averaged over ten time steps, as
outlined in the text.
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FIG. 4. (a) Velocity-velocity auto-correlation functions
(VACF) of Au calculated from molecular-dynamics simula-
tions at 300 K and 1200 K using our TB model. (b) Fi-
nite-temperature phonon spectral-density (PSD) Z(f) for Au
at 300 K and 1200 K. The PSD was computed by Fouri-
er-transform of the VACF shown in (a).

The TBMD code computes all of the eigenvalues of the
system at each time step, making it simple to determine
electronic properties such as the density of states as a
function of temperature. In Fig. 3 we show the electronic
DOS at several temperatures. For each temperature, we
saved the eigenvalues for ten different time steps. The
DOS was then calculated assuming a Fermi distribution,
and the resulting DOS were averaged. We see that the
dominant effect of increasing temperature is to reduce
the peaks in the electronic DOS spectrum.

Phonons at finite temperature

We determined the phonon dispersion curves and
spectral-density of fcc Au at finite temperature by per-
forming MD simulations. In Fig. 4(a) we show the
velocity-velocity auto-correlation functions (VACF) ob-
tained from the MD simulation at 300 K and 1200 K.
We see that increasing temperature damps out the oscil-
lations in the VACF.
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FIG. 5. Finite-temperature phonon dispersion curves along
the high-symmetry directions in the BZ, for Au at 300 K cal-
culated using molecular-dynamics simulations based on our
TB model. Filled circles are theoretical data, lines are poly-
nomial fits to theoretical data, open squares are experimental
data points.21 The dispersion curves were computed by Fouri-
er-transform of the time dependent wave-dependent VACF
(see text).

The finite-temperature phonon spectral-density (PS-
D) can be obtained from the Fourier-transform of the
VACF,23 as shown in Fig. 4(b). The PSD has the two
well defined peaks, consistent with the DOS at T=0 K.
The position of the peaks is also in agreement with the
theoretical data at T=0 K. The limited resolution in the
finite-temperature PSD, due to the short length of the
MD simulation, makes a detailed comparison with ex-
periment difficult. It should also be pointed out that
the PSD is proportional to the phonon DOS only in an
harmonic solid; one should therefore be cautious when
comparing the PSD to the phonon DOS, in particular at
high temperature. We believe this may explain the dif-
ference in height between the two peaks in the PSD, in
contrast to the T=0 K phonon DOS, where both peaks
have about the same height. Comparison of the PSD at
300 and 1200 K clearly reveals the effect of temperature:
a clear shift of phonon frequencies to lower values and a
broadening of the peaks in the PSD.

To compute the phonon dispersion curves we calculate
the PSD from the Fourier-transform of the velocity- and
position-dependent auto-correlation function. Details of
this computational procedure can be found elsewhere.24
The dispersion curves along high-symmetry directions in
the BZ at 300 K are reproduced in Fig. 5. The com-
parison with experimental data reveals the same discrep-
ancies as in the T=0 K dispersion curves: the high fre-
quency longitudinal modes are overestimated close to the
BZ-edge.

We determined the temperature dependence of phonon
frequencies by performing MD simulations at 300, 600,
900 and 1200 K where for each temperature we fix the
volume at the experimental value. In Table III we show
the frequency of selected BZ-edge phonons as a function
of temperature. These frequencies were calculated as de-
scribed above for the 300 K case.

As expected the frequency of phonons decreases with
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TABLE III. Selected phonon frequencies (in THz) at high
symmetry points in the Brillouin-zone, calculated as a func-
tion of temperature (T in Kelvin) from MD simulations using
our TB model.

T (K) X(T) X(L) L(T) L(L)

300 2.85 5.40 1.90 5.35
600 2.82 5.35 1.80 5.22
900 2.77 5.28 1.70 5.18
1200 2.65 5.20 1.60 5.15

temperature. For the modes we computed the change
was of the order of 0.2-0.3 THz, the transverse mode at
L exhibiting the largest decrease. Part of this variation
is probably due to increase in volume as temperature
increases. It should be noted that using MD to com-
pute the phonon dispersion curves at finite temperature
can be particularly useful in systems where a particu-
lar crystal structure is unstable at T=0 K (bcc Ti is one
example) and where the dynamical-matrix method will
predict unstable phonon modes. MD simulation may also
be useful to determine the vibrational properties of sys-
tems for which an experimental study may be difficult,
e.g. clusters or nano-crystals.

Thermal expansion

To determine the theoretical thermal expansion coeffi-
cient α we use the following definition for α:

α =
1

3B

(
∂P

∂T

)
V

. (1)

This definition requires the calculation of the pressure as
a function of temperature for a fixed volume. We perfor-
m MD simulations at 300, 600, 900 and 1200 K, keeping
the volume fixed at the experimental value at room tem-
perature (lattice constant a = 4.08 Å). For each tem-
perature we selected 10 independent configurations from
the trajectories generated by the MD and computed the
instantaneous pressure. We found that 10 configurations
per temperature were enough to get the average pressure
with an error margin of ∼5%. If, in Eq. 1, we assume
the pressure varies linearly as a function of temperature
and if for B we use the theoretical value of the bulk mod-
ulus at T=0 K and at the experimental volume, we get
α = 11×10−6 K−1. This underestimates the experimen-
tal value of 14×10−6 K−1 at 300 K.25

An alternative definition of α is given by:

α =
1

3V

(
∂V

∂T

)
P

. (2)

To check the calculation of α based on Eq. 1 we comput-
ed α using this latter definition. This requires MD sim-
ulations for several volumes (typically 3 or 4) for a given
temperature. For each volume V we compute the average
pressure P . The equilibrium volume at each temperature
is found by interpolating P (V ) to find the volume that
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FIG. 6. Lattice constant of Au as a function of tem-
perature. The black circles are the results of the molecu-
lar-dynamics simulations using our TB model, open squares
are the experimental data.26
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FIG. 7. Mean-square displacement of Au as a function of
temperature. The filled circles are the results of the molecu-
lar-dynamics simulations using our TB model, empty squares
are the experimental points.27

gives zero pressure. We performed this procedure at 300,
600, 900 and 1200 K to find V (T ).

In Fig. 6 we show the lattice constant as a function of
temperature as derived from the simulations, compared
to experimental results.26 The overall agreement with
experiment is good given that the theoretical data is well
within 1% of experiment in the temperature range we
simulated.

From Fig. 6 we can see that it is reasonable to assume
that the volume varies linearly as a function of T. So by
using Eq. 2, we get α = 11 × 10−6 K−1, in agreement
with our previous estimate based on Eq. 1.

Mean-square displacement

We used the atomic positions generated by the MD
simulations performed for several temperatures at the
corresponding experimental lattice constants to compute
the atomic mean-square displacement (MSD). In Fig. 7
we compare the temperature dependence of our comput-
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1773 K. The dotted line is the result of molecular-dynamics
simulations using our TB model, the full line is the experi-
mental result.29

ed MSD with experimental data.27 The agreement with
experiment is excellent up to 900K, at higher tempera-
tures the theoretical MSD gets larger than the experi-
mental values. Again it should be noted that the results
of our calculation are in much better agreement with ex-
periment compared to previous work using the second-
moment-approximation to TB.1

Liquid Au

To further test the transferability of our model to dif-
ferent atomic environments we studied the liquid phase
of Au. The simulation was performed with 200 atoms in
a periodic fcc unit cell. The density of the sample was
chosen to be equal to the experimental value of 16.746 g
cm−3 at 1773 K.28 One thousand (1,000) MD steps were
used to equilibrate the system. Statistical averages of
structural properties were computed from data collected
from the next two thousand (2,000) MD steps. The radial
distribution function g(r) obtained from our simulation
(shown in Fig. 8) is found to be in very good agreement
with experimental data.29

We also calculated the electronic DOS of liquid gold at
1773 K, using the same procedure as in the solid. The
result is shown in Fig. 9. While the overall shape of the
DOS, including the width, is similar to Fig. 3, the high
temperature and loss of symmetry has destroyed most of
the peak structure. However, two new peaks appear at
low energies, probably due to the lack of periodicity in
the liquid.

IV. CONCLUSIONS

We presented results of simulations of bulk fcc Au us-
ing our tight-binding model. Our TB Hamiltonian was
used to compute the elastic constants of bulk Au, which
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FIG. 9. Electronic density of states of liquid gold at

T = 1773K, using the same method as in Fig. 3.

were in very good agreement with the results of LDA
calculations and experimental data. Using a supercel-
l method to compute the dynamical-matrix we deter-
mined the phonon-dispersion curves and phonon density-
of-states of Au at T=0 K. Our calculated dispersion
curves are in good agreement with experimental data,
except for a tendency to overestimate the frequency of
longitudinal modes close to the Brillouin-Zone edge. We
checked that this discrepancy is not a consequence of the
method used to calculate the phonon frequencies. In ad-
dition, we performed molecular-dynamics simulations at
various temperatures to compute the phonon density-of-
states and phonon-dispersion curves at finite tempera-
ture. The molecular-dynamics simulation were also used
to obtain the temperature dependence of the lattice con-
stant and of the atomic mean-square-displacement. Both
quantities were found to be in good agreement with ex-
perimental data. Finally, we performed an MD simula-
tion of the liquid phase of Au and obtained a radial distri-
bution function in very good agreement with experiment.
We believe these results demonstrate that our TB mod-
el, using parameters generated by the same procedure,30
can successfully be applied to the study of dynamical and
finite temperature properties of other metals.
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